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Soliton dynamics in periodically modulated directional couplers

P. L. Chu, B. A. Malomed,* G. D. Peng, and 1. M. Skinner
School of Electrical Engineering, University of New South Wales, P.O. Box 1, Kensington, New South Wales 2033, Australia
(Received 28 January 1994)

Using the variational approximation, we analyze the evolution of solitons in a twin-core nonlinear op-
tical fiber whose coupling coefficient has both constant and spatially periodic parts. The influence on
switching of direct and parametric resonances between the period of the energy oscillation within the
coupler and the periodic modulation is considered, as is the influence of the modulation on a bifurcation
that splits the stationary symmetric soliton into a pair of asymmetric ones.

PACS number(s): 42.81.Qb, 42.82.Et, 42.50.Rh, 03.40.Kf

I. INTRODUCTION

Using solitons for switching in nonlinear directional
couplers has attracted much attention and inspired many
theoretical investigations [1-3]. In most cases, the exam-
ined coupler consists of two identical, parallel
waveguides, so that the coupling coefficient is constant.
However, there is significant experimental interest in
couplers which do not keep the coupling coefficient con-
stant; for example, grating assisted couplers [4].
Couplers with varying separation between the two cores
or periodic modulation of the cores’ refractive indices are
both readily fabricated, and such a spatial variation of
the coupling coefficient may create more possibilities for
coupling and switching régimes [5].

Since a soliton in the homogeneous coupler is apt to
produce a periodic oscillation of energy between the
cores, it is natural to analyze the soliton’s dynamics in a
coupler, periodically modulated in space. Interference
between this modulation and the proper soliton’s oscilla-
tions may cause a resonance, thereby producing new
dynamical régimes in the coupler. Resonance between
small periodic modulations and the internal oscillations
of a bound state of two solitons in weakly coupled fibers
was considered in Ref. [6]. In contrast, here we consider
a single soliton launched into one arm of the coupler, and
examine its evolution.

The soliton oscillations resonantly driven by the
periodic modulation are modeled with coupled cubic
Schrodinger equations describing the envelopes of the
electromagnetic waves in the two waveguides:

iu, +1u_ lul>u=—[1+ecos(kz)]v ,

(1

iUz+%UTf+|v|2v= —[+ecos(kz)]u ,

where the usual scaling of variables has been done, the
constant part of the coupling coefficient has been normal-
ized to unity, and € and k are the amplitude and wave
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number of the modulation, respectively. In all cases we
take € <1, so that the full coupling coefficient does not
change sign. Although numerical solutions always start
from an initial condition where all the energy is confined
to one core, analysis of the stability does consider the
case of some energy initially being in each arm of the
coupler. We are interested in values of the modulation’s
wave number k which are matched in some way to this
initial energy. Either k equals the wave number of the
soliton’s oscillation, or is twice that value. These two
cases correspond, respectively, to direct and parametric
resonance at small values of €.

The analysis will develop in the semianalytical approxi-
mation based on the Lagrangian formalism associated
with Eq. (1). Following this approximation [2,3], one as-
sumes the temporal and spatial variations of the soliton
to factor as

u =7 sech(nr)cos(0(z))e #)Tivz) |

v =7 sech(n7)sin(6(z))e #? ¥

Substituting this into the Lagrangian density correspond-
ing to Eq. (1), integrating over 7, and varying the result-
ing effective Lagrangian lead to equations for the evolu-
tion of 6(z) and ¥(z). A straightforward generalization of
those in Refs. [2] and [3], these are

de

4 = —[1+e€cos(kz)]sin(2¢) ,

(2)
%=2P0cos(20)—[l+ecos( kz)]cos(24)cot(26) ,
where P,=1?/6 corresponds to the soliton’s energy. The
factor 6 normalizes this correspondence so that the
switching value—the transition between full and partial
exchange of energy between the two cores—is given by
Py=1 in the unperturbed coupler [2]. The wave number

of the soliton oscillation k, depends on P, [3]:
7/K(P}) if Py<1
ko(Po )= 2\ .
2wPy/K(1/P3) if Pu>1,

where K is the complete elliptic integral of the first kind.
An additional equation exists for ¢(z), but, being in-
dependent of ¥ and 0, is of no interest in what follows.

5763 ©1994 The American Physical Society



5764

The initial condition nominated above corresponds to
6(0)=0.

It is necessary to emphasize that the soliton ansatz pos-
tulated above (in the same form as in Refs. [2] and [3])
neglects the chirp, as well as any possible variation of the
width of the soliton. Recently, it has been demonstrated
[7] that incorporation of the corresponding degree of
freedom into the variational formalism significantly im-
proves the accuracy of the results. However, the corre-
sponding system of ordinary differential equations
(ODEs) becomes complicated, and cannot be solved
analytically, unlike the system given by Eq. (2), even in
the case e=0. Hence here, where the problem of energy
oscillations between two cores with the periodically
modulated coupling constant is considered, we employ
the simplest, chirpless, constant-width ansatz for the
soliton’s form.

In Sec. II, results are presented for the numerical solu-
tion of Eq. (2). These solutions reveal the onset of what
appears to be dynamical chaos at some critical value €,
which depends on the soliton’s energy P,. The further P,
is from the critical value P,=1, the larger the value of
€crity 1.6, Eit( Pg) has a sharp minimum at P,=1, the
switching value of energy in the case €e=0 (see Fig. 1).
We also find the shifted switching energy as a function of
€.

In Sec. III, we present a fully analytical description of
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FIG. 1. The numerically determined boundary between regu-
lar and irregular behaviors. Case (a) is direct resonance; case (b)
is parametric resonance.
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some special dynamical régimes driven by the periodic
perturbation. The first corresponds, in the case €—0, to
small-amplitude oscillations of the variable 6 about the
value 0. It is demonstrated that the parametric resonance
is analytically tractable in this case, and reduces simply
to a shift in the spatial wave number of the oscillations.
Next we consider the effect of the periodic modulation on
the recently analyzed bifurcation of the solitons [3]. This
bifurcation occurs at Po=1. For P,> 1, the stationary
soliton solution 6(z)=m/4 (i.e., a symmetric distribution
of energy between the two cores) becomes unstable, split-
ting into two mutually symmetric stable stationary soli-
tons with unequal energies in the two cores. We show
that periodic modulation shifts the bifurcation point to a
smaller value of P, and renders the solitons produced by
the bifurcation nonstationary (i.e., there are oscillations
between the cores).

II. DIRECT AND PARAMETRIC RESONANCES:
NUMERICAL RESULTS

In this section we numerically investigate how the
periodic variation of the coupling coefficient affects the
coupling and switching behavior of the optical solitons.
In particular, we concentrate on the direct and paramet-
ric resonances.

We study only the qualitative properties of the varia-
tion. It has been shown [8] that the variational approxi-
mation may have an error less than or of the order of
10%. Thus this approximation is adequate for this pur-
pose. Consequently, rather than the partial differential
equations of Eq. (1), we start with the ODEs of Eq. (2),
which are much easier to solve with appropriate initial
conditions.

From numerical investigation, it is found that the
periodic perturbation of coupling can lead to chaotic (i.e.,
irregular) coupling of solitons in a nonlinear coupler as
well as the normal (regular) coupling seen in the unper-
turbed coupler. Figure 1 shows the numerically deter-
mined demarcation between normal and chaotic cou-
pling. Here we use as an operational definition of chaotic
coupling that irregularity occurs throughout a coupling
distance of z =47. In Fig. 1(a), the periodic perturbation
satisfies the condition for direct resonance: the spatial
wave number k equals the coupling wave number ky(P,)
of the soliton in the unperturbed coupler, whereas Fig.
1(b) shows parametric resonance, i.e., k =2ky(P;). In-
terestingly, in both cases, the boundary between normal
and chaotic couplings caused by the perturbation has a
very deep minimum at Py=1, which is the critical
switching threshold energy for the soliton in the unper-
turbed coupler. This is quite natural, since the coupling
behavior at the critical point is most sensitive to any dis-
turbance of the coupling coefficient. With this in mind
we understand why the boundaries occur at higher values
of €, as the launched energy deviates from P, =1. The
behaviors—shown in Figs. 1(a) and 1(b)—for periodic
perturbations of very different spatial wave number are
similar. Based on this, we conclude that the coupling or
switching of solitons at or near the critical energy is very
sensitive to periodic perturbation of the coupling
coefficient, and, as the energy changes more from this
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FIG. 2. The critical switching energy of the soliton as a func-
tion of the modulation amplitude € for different spatial frequen-
cies of the modulation.
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FIG. 3. Typical switching curves for the 7/2 coupler with
periodically modulated coupling. Different amplitudes of the
modulation are shown. Cases (a) and (b) are direct and para-
metric resonances, respectively. The modulation period is that
of the soliton corresponding to an energy P, = %
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value, the system becomes less sensitive. If we define a
threshold amplitude of the periodic perturbation at
which chaotic coupling starts, then this threshold will
vanish at the critical energy, and increase approximately
in proportion to the difference between the actual energy
and the critical energy.

Figure 2 shows the critical switching energy increases
as the magnitude of the perturbation increases. Here the
perturbation’s wave number is given by k =ky(Py=1),
which equals the spatial wave number of the soliton cou-
pling in the unperturbed coupler with initial energy
Py=3. Choosing other valuers of k changed only the de-
tails of the curve, not the qualitative trend.

The effect of periodic perturbation on the switching
performance of the coupler is illustrated in Fig. 3. These
results are for the 7/2 coupler. (Results for the 7
coupler are similar.) Here k =ky(P,=1) is used for both
cases, i.e., K =kqy(3) for direct and k =2k($) for para-
metric resonances. It is apparent that the perturbation
makes slight difference to the switching behavior, except
over a limited range of energies. While the switching en-
ergy is sometimes influenced significantly for the case of
direct resonance, for parametric resonance it is not. Fur-
ther investigation found that the range of energy over
which there is an appreciable influence of the perturba-
tion is limited and solely determined by the value of k:
higher values of k lead to higher values of the energies
bounding this influenced range.

III. ANALYTICAL TREATMENT

A. Influence of parametric resonance
on small-amplitude oscillations

Fully analytical consideration of the parametric reso-
nance is possible when the variable 6(z) performs small-
amplitude oscillations about 0, i.e., the share of the
soliton’s energy in the second core remains small. This
occurs when the energy of the soliton is significantly
higher than the critical switching value, in which case
ko—4P,. In this case, Eq. (2) can be linearized in 6:

%g = —sin(2y)—e cos(kz)sin(2¢) ,
(3)

9% =2P,0— ;cos(2¢) — € cos(kz)cos(2y) .

In the case of parametric resonance, the fundamental
wave number is %k. Accordingly, a resonant solution to
Eq. (3) is sought in the form

0(z)=B cos(kz+98) ,

@)
2z)=1kz+¢,

with constants B, §, and ¢. Substitution of Eq. (4) into
Eq. (3) leads to two solutions. One has §=w/2=¢,
B=1/(2P,), and

k=4Py(1+1e) ; (5)
for the other, 5=0=¢, B =1/(2P,), and
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k=4P,(1—1ie) . (6)

In this case, the parametric resonance simply shifts the
spatial wave number of the soliton’s small oscillations,
according to Egs. (5) and (6), without altering their am-
plitude.

B. Influence of periodic modulation
on soliton bifurcation

Equation (2) always possesses the obvious solution
0(z) =7 /4 and siny(z) =0, corresponding to a stationary
symmetric soliton with the energy equally divided be-
tween the two cores. In Ref. [3], it was demonstrated
that the symmetric soliton is unstable at Py > 1: at the
point Py=1, undergoing a so-called “pitchfork bifurca-
tion,” splitting into two stable, nonsymmetric solitons,
which, however, are symmetric with respect to each oth-
er. This bifurcation was predicted in Ref. [3] on the basis
of the above-mentioned constant-width ansatz for the
soliton’s wave form. Later [7,9] it was shown that allow-
ing a changing width for the soliton slightly shifts the bi-
furcation point (the relative shift is a few percent), and it
renders the bifurcating solutions unstable in a narrow re-
gion, the width of which is of the same order of magni-
tude. In this work, we consider the influence of the
periodic modulation on the bifurcation, neglecting those
relatively small corrections.

To this end, expand Eq. (2) near the point Py=1, as-
suming that €,(P;—1),[60—(7/4)]<<1. The resulting
equation can be recast as one for 6,(z)=0(z)— (7 /4):

d’e
dz?

L 8430, +863+4e cos(kz)8, =0 , 7

with g5 =(Py—1).

At €=0, the above-mentioned bifurcation is included
in Eq. (7): the solution 8,(z)=0 corresponds to the sym-
metric soliton losing its stability when g3 becomes posi-
tive, i.e., at P0>%. The nonsymmetric solitons corre-
spond to the constant solutions

0,=+qo=+1Po—1 . (8)

This remains true as long as (P, — ) <<1. It is straight-
forward to find spatial eigenfrequencies of infinitesimal
oscillations around these stable solutions. At Py <1 (e,
g3 <0), the corresponding squared eigenfrequency for the
stable solution 6,(z)=0 is —8g}, which is positive. At
Py> 1 (e, g3 >0), the squared eigenfrequency of oscilla-
tion about the solution given by Eq. (8) is 16¢3, which
also is positive.

Proceeding to nonzero values of € in Eq. (7), notice that
the parametric resonance introduces an instability to the
solution 6;=0 in the small region around the point
q3=—k?/32 given by

|%k2+q6|<%e. 9
Very close to the left edge of this region, i.e., g3 negative

and slightly greater than —Lk>—Lle, the nontrivial
stable solutions produced by instability of the trivial one

6,(z) =0 are found to be
91(z)=i%\/q6+}e+ ThZsin(lkz) . (10)

Subsequent analysis strongly depends on the value of the
modulation wave number k. If it is sufficiently large, the
region defined by Eq. (9) is separated from the bifurcation
point g§=0, thereby leaving the bifurcation unaffected
by the modulation.

However, the situation differs if k2 <8¢, because the
point g3 =0 is inside the region defined by Eq. (9). Here
we concentrate on the limiting case of long-wave modula-
tion, i.e., k2 <<8¢. (For the intermediate case of k2~ 8¢,
the bifurcation phenomena for the system considered are
very involved, and will not be considered here.) Under
this condition, except in a small neighborhood of the
edge point gj~—le—-Lk? one can neglect the first
term in Eq. (7) to obtain the simplest approximation:

0, if q(z) < —;—cos(kz)

0,(z)= 172 (1

q(2)~§cos(kz) if g3 > %cos(kz) )

-+

More correctly, this solution would be modified to
smooth it near the points where its derivative is discon-
tinuous, and the extended domains where it vanishes
would become domains where the solution nearly van-
ishes. To understand a global structure of the solution
[which actually means the choice of sign in Eq. (11)], we
note that it must be obtained by a continuous deforma-
tion of the solution given by Eq. (10). Hence, as long as
g3 <€/2, the solution must have the form shown in Fig.
4. However, for g3>e€/2, no longer do regions exist
where the solution nearly vanishes [recall that there are
regions where it vanishes in the approximation given by
Eq. (11)], so the solution may have only the form shown
in Fig. 5. Thus there must be an additional bifurcation

"y

FIG. 4. The shape of the solution prescribed by Eq. (11) at
—e/4<qd<e/2. The solid and broken curves represent the
two mutually symmetric solutions, corresponding to the two
possible choices of sign.
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FIG. 5. The shape of the solution prescribed by Eq. (11) at
g3 > €/2. The solid and broken curves represent the two mutu-
ally symmetric solutions, corresponding to the two possible
choices of sign.

7

where these two forms of solution separate, i.e., where
the value of 6,(z) no longer oscillates about 0, but about a
nonzero average. Although we did not consider this ad-
ditional bifurcation in the details, it is plausible that it
occurs when the curves shown in Figs. 4 and 5 are
tangential to the axis 6,=0, i.e., at q(2,=e/2. That the
envelopes of the oscillations defined by Egs. (10) and (11)
intersect at g =€/2 is also suggestive of this point.

Thus we conclude that the long-wave modulation shifts
the transition between the trivial symmetric solution
[6(z)=1/4] and a nontrivial one from the critical point
Py=1 to that

Po=i—le—Lk?. (12)

Unlike the earlier findings for the case €=0 [3], the non-
trivial solution produced by the shifted bifurcation
remains symmetric. However, it is nonstationary, i.e., it
oscillates between the two cores. With further increase in
the energy, the additional symmetry-breaking bifurcation
occurs at Py=1+ 1€ [omitting a possible correction of
order k2 see Eq. (12)]. Finally, with yet more increase of
the soliton’s energy, the asymmetric solution described by
Eq. (11) gradually approaches the solution given by Eq.
(10), existing at €=0. The analytical results presented
and explained above are summarized in the stylized bifur-
cation diagram of Fig. 6.

IV. CONCLUSION

The effect of a small amplitude, periodic perturbation
on a soliton launched into one arm of a directional
coupler has been examined. We found that as the energy
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FIG. 6. A qualitative bifurcation diagram for the soliton of
energy approximately P,= %, in the coupler with long-wave
modulation of the coupling coefficient. The solid and dotted
curves represent the existence of the two solutions, correspond-
ing to the two options for sign in Eq. (11), and describing oscil-
lation of the energy between the two arms of the coupler. The
oscillations with — € <Py — ] < 1€ represent the existence of
symmetric solutions; the diverging curves with damped oscilla-
tions for Po—1>1e indicate the asymmetric solutions,
(Py— ) coinciding asymptotically with the stationary asym-
metric solutions, given in Ref. [3]. The broken curves form the
envelope of the soliton oscillations described by Eq. (11).

carried by the soliton approaches the threshold energy
for switching—from either above or below—the size of
the perturbation required to cause chaotic coupling be-
tween the arms reduces, until, exactly at threshold, i.e.,
Py=1, any perturbation causes chaos. Using numerical
investigation, the effect of the perturbation on the switch-
ing curve was found to be minimal.

Further, analysis within the variational approximation
showed how the perturbation changed the internal struc-
ture of the natural solitons of the system, and caused
them to manifest internal oscillations. These oscillations
were shown qualitatively to be most significant in the
neighborhood of the solitons’ bifurcation point, where
the trivial soliton splits into nontrivial asymmetric struc-
tures. While in the unperturbed coupler these solitons
are stationary, nonzero values of € cause oscillation of the
energy between the two cores in the neighborhood of
P0=%-
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